Preparation Methods and Thermal Performance of Hybrid Nanofluids
نویسندگان
چکیده
منابع مشابه
Preparation of CuO/Water Nanofluids Using Polyvinylpyrolidone and a Survey on Its Stability and Thermal Conductivity
In this article CuO/water nanofluid was synthesized by using polyvinylpyrolidone (PVP) as the dispersant. Thenanofluid stability period and the heat transfer enhancement were determinedby measuring the thermal conductivities. To study the nano-fluid stability, zeta (ζ) potential, and absorbency were measured under different pH values and PVP surfactant concentrations; also thermal conductivity...
متن کاملThermal Conductivity of Nanofluids
Nanofluids are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. Nanofluids have unique features different from conventional solid-liquid mixtures in which mm or μm sized particles of metals and non-metals are dispersed. Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer. Research work ...
متن کاملThermal performance of flat-shaped heat pipes using nanofluids
0017-9310/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.ijheatmasstransfer.2009.12.007 * Corresponding author. E-mail address: [email protected] (K. Vafai). Analytical models are utilized to investigate the thermal performance of rectangular and disk-shaped heat pipes using nanofluids. The liquid pressure, liquid velocity profile, temperature distribution of the heat pipe wall, tempera...
متن کاملAssessment of Relevant Physical Phenomena Controlling Thermal Performance of Nanofluids
This paper provides an overview of the important physical phenomena necessary for the determination of effective thermal conductivity of nanofluids. Through an investigation, a large degree of randomness and scatter has been observed in the experimental data published in the open literature. Given the inconsistency in these data, it is impossible to develop a comprehensive physical-based model ...
متن کاملNanofluids for thermal transport
challenges facing many diverse industries, including microelectronics, transportation, solid-state lighting, and manufacturing. Technological developments such as microelectronic devices with smaller (sub-100 nm) features and faster (multi-gigahertz) operating speeds, higher-power engines, and brighter optical devices are driving increased thermal loads, requiring advances in cooling. The conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Advanced Research in Applied Mechanics
سال: 2020
ISSN: 2289-7895
DOI: 10.37934/aram.66.1.716